Structural and spectropotentiometric analysis of Blastochloris viridis heterodimer mutant reaction center.
نویسندگان
چکیده
Heterodimer mutant reaction centers (RCs) of Blastochloris viridis were crystallized using microfluidic technology. In this mutant, a leucine residue replaced the histidine residue which had acted as a fifth ligand to the bacteriochlorophyll (BChl) of the primary electron donor dimer M site (HisM200). With the loss of the histidine-coordinated Mg, one bacteriochlorophyll of the special pair was converted into a bacteriopheophytin (BPhe), and the primary donor became a heterodimer supermolecule. The crystals had dimensions 400 x 100 x 100 microm, belonged to space group P4(3)2(1)2, and were isomorphous to the ones reported earlier for the wild type (WT) strain. The structure was solved to a 2.5 A resolution limit. Electron-density maps confirmed the replacement of the histidine residue and the absence of Mg. Structural changes in the heterodimer mutant RC relative to the WT included the absence of the water molecule that is typically positioned between the M side of the primary donor and the accessory BChl, a slight shift in the position of amino acids surrounding the site of the mutation, and the rotation of the M194 phenylalanine. The cytochrome subunit was anchored similarly as in the WT and had no detectable changes in its overall position. The highly conserved tyrosine L162, located between the primary donor and the highest potential heme C(380), revealed only a minor deviation of its hydroxyl group. Concomitantly to modification of the BChl molecule, the redox potential of the heterodimer primary donor increased relative to that of the WT organism (772 mV vs. 517 mV). The availability of this heterodimer mutant and its crystal structure provides opportunities for investigating changes in light-induced electron transfer that reflect differences in redox cascades.
منابع مشابه
Time-resolved crystallographic studies of light-induced structural changes in the photosynthetic reaction center.
Light-induced structural changes in the bacterial reaction center were studied by a time-resolved crystallographic experiment. Crystals of protein from Blastochloris viridis (formerly Rhodopseudomonas viridis) were reconstituted with ubiquinone and analyzed by monochromatic and Laue diffraction, in the dark and 3 ms after illuminating the crystal with a pulsed laser (630 nm, 3 mJ/pulse, 7 ns du...
متن کاملRevised Genome Sequence of the Purple Photosynthetic Bacterium Blastochloris viridis
Blastochloris viridis is a unique anaerobic, phototrophic purple bacterium that produces bacteriochlorophyll b. Here we report an improved genome sequence of Blastochloris viridis DSM133, which is instrumental to the studies of photosynthesis, metabolic versatility, and genetic engineering of this microorganism.
متن کاملRhodobacter sphaeroides mutants overexpressing chlorophyllide a oxidoreductase of Blastochloris viridis elucidate functions of enzymes in late bacteriochlorophyll biosynthetic pathways
In previous studies we have demonstrated that chlorophyllide a oxidoreductases (CORs) from bacteriochlorophyll (BChl) a-producing Rhodobacter species and BChl b-producing Blastochloris viridis show distinct substrate recognition and different catalytic hydrogenation reactions, and that these two types of CORs therefore cause committed steps for BChls a and b biosynthesis. In this study, COR gen...
متن کاملComplete Genome Sequence of the Bacteriochlorophyll b-Producing Photosynthetic Bacterium Blastochloris viridis
We report the complete genome sequence of the purple photosynthetic bacterium Blastochloris viridis belonging to α-Proteobacteria. This is the first completed genome sequence of a phototroph producing bacteriochlorophyll b. The genome information will be useful for further analysis of the photosynthetic energy conversion system and bacteriochlorophyll pigment biosynthesis.
متن کاملComputational quantification of the physicochemical effects of heme distortion: redox control in the reaction center cytochrome subunit of Blastochloris viridis.
A facile, experimentally calibrated computational procedure is described that affords the relative ordering of heme cofactor reduction potentials with respect to intrinsic shifts brought about by apoprotein induced heme-macrocycle distortion. The method utilizes heme-Fe partial atomic charges and is useful with the computationally inexpensive B3LYP/3-21g method calculated for simplified heme mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1788 9 شماره
صفحات -
تاریخ انتشار 2009